首页 > > 详细

讲解 ENERGY 201C Spring ‘25 Supplemental Note for HW#3: Problem 2辅导 C/C++语言

ENERGY 201C

Spring ‘25

Supplemental Note for HW#3: Problem 2

These notes are adapted from the book “Control of Fuel Cell Power Systems: Principles, Modeling, Analysis and Feedback Design by J. T. Pukrushpan, A. G. Stefanopolou and H. Peng” [1]. The notation used in the equations is updated to match the notation in the lecture slides.

The irreversible fuel cell voltage can be determined with the following relation:

where the individual terms are provided as follows.

1. Nernst potential, E

As shown in the lecture notes, the reversible voltage of the hydrogen fuel cell is:

This is known as “Nernst Potential” of a hydrogen fuel cell. The Gibbs free energy changes at standard temperature and pressure (STP) (25oC and 1 bar) gives a reference potential of 1.229 V.

Using thermodynamic values of the standard-state entropy change, the expression can be rewritten as:


where

E

Nernst potential [V]

Tfc

Stack temperature [K]

PH2

Hydrogen partial pressure [atm] (1 atm = 101325 Pa)

Po2

Oxygen partial pressure [atm]

2. Activation overvoltage, ηact

This term maybe be estimated by using the Tafel equation, which relates the current density to the activation overvoltage. However, better results can be obtained by using the following correlation obtained from empirical data on a Nafion 117 membrane:

where η0  is the voltage drop at zero current density in [V], and ηa in [V] and c1 are constants. The parameters in the expression above are:

where

ηact

Activation overvoltage [V]

i

Current density [A/cm2]

Tfc

Stack temperature [K]

pca

Cathode pressure [bar]

poz

Oxygen partial pressure [bar]

psat

Water saturation pressure [bar]

The saturation pressure of water as a function of temperature [2] is given by:


In the formula above, psat  is in [kPa].

3. Ohmic overvoltage, ηohm

The Ohmic overvoltage is proportional to the membrane resistance:

where Rohm  is the internal specific resistance [Ω .cm2]. The value for this parameter can be determined as follows:

where tm  is the membrane thickness [cm]. The membrane conductivity σm is a function of the membrane water content λm and the temperature Tfc  as in the following:

Here, we can assume that the water content of the membrane is equal to the relative humidity of the cathode and it varies in the range  of 0 to 14 corresponding (proportionally) to 0 to 100% RH respectively.

4. Concentration overvoltage, ηcon

An approximation of the concentration overvoltage [V] to match experimental data is:

where c2, c3  and imax  are constants that depend on the temperature and reactant partial pressure and can be determined empirically.

where i is the current density in [A/cm2] and Tfc  is the temperature in [K].

References

[1]   J. T. Pukrushpan, A. G. Stefanopoulou, and H. Peng, “Control of fuel cell power systems: principles, modeling, analysis and feedback design”, Springer Science & Business Media, 2004.

[2]   J.C. Amphlett, R.M. Baumert, R.F. Mann, B.A. Peppley, and P.R. Roberge, “Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell”, Journal of Electrochemical Society, 142(1):9-15, 1995.


联系我们
  • QQ:99515681
  • 邮箱:99515681@qq.com
  • 工作时间:8:00-21:00
  • 微信:codinghelp
热点标签

联系我们 - QQ: 99515681 微信:codinghelp
程序辅导网!