首页 > > 详细

辅导CS-UY 1114、讲解python编程语言、讲解YourNetID_hwa、python辅导 辅导R语言编程|讲解Python程序

Homework A:
Classes
CS-UY 1114 NYU Tandon
Download the code file hwa.py and rename it to YourNetID_hwa.py. You will modify
this file as specified in the problems below, and submit it to Gradescope.
Modify the file only as specified in the problems, by replacing the pass lines as instructed.
Do not modify any other areas of the file.
Introduction
Read the provided code file thoroughly.
In it, we present two classes: Point, for representing a point in two-dimensional space;
and Rectangle, for representing a rectangle.
Each instance of Point contains a pair of floats. This should be intuitive to you.
Each Point knows how to draw itself using the draw method. For example, I can create
a Point and make it draw with the following code:
>> p = Point(70.0, 10.0)
>> p.draw()
Each Point can also move itself with its move method. In the following code, I create
a new Point instance, print out its coordinates, move it, and then print out its new
coordinates.
>>> p = Point(10.0, 20.0)
>>> print(p.x, p.y)
10.0 20.0
>>> p.move(7.0, -5.0)
>>> print(p.x, p.y)
17.0 15.0
Note that the move method updates the value stored in the instance of Point, but it does
not change the position of any point drawn on the screen. Therefore, drawing the point,
then moving it, then drawing it again, will result in two distinct points appearing on the
screen.
Read and then run the point_move_test function from the file to observe the effect of
various methods on Point.
1Problems
Problem 1
You have been given an incomplete implementation of a Rectangle class, which describes
a rectangle on a two-dimensional plane.
Rectangle is defined in terms of Point. Each instance of Rectangle has two member
variables, both of type Point. For example, if I have two Points, one at coordinate
20, 40, and the other at 70, 10, we can identify the following Rectangle:
lowerright (70, 10)
upperleft (20, 40)
Note that the position of the remaining two corners of the rectangle can be inferred from
the position of the two given.
Complete the height and area methods of Rectangle, according to the specification
given in the code.
Your area method must be implemented by calling the Rectangle’s height and width
methods. Do not access the underlying Points directly.
Problem 2
Complete the diagonal_length method of Rectangle, according to the specification
given in the code.
You must implement diagonal_length by calling Point’s distance method. You may
not use the math.sqrt or the exponentiation operators directly in your code.
Test your code by running the function rectangle_area_test. If you’ve implemented
height, area, and diagonal_length correctly, you should get this output:
>>> rectangle_area_test()
r1 has width 110.0
r1 has height 110.0
r1 has area 12100.0
r1 has diagonal length: 155.56349186104046
(The final value is approximate; your answer may have fewer decimal places.)
Problem 3
Complete the move and draw methods of Rectangle, according to the specification given
in the code.
The draw method draws a rectangle on the turtle canvas according to the current values
stored in the Rectangle instance. You must implement draw by using only the following
turtle functions: turtle.penup, turtle.pendown, and turtle.goto.
The move method just changes the location of the rectangle (i.e. of both of its points) by
the horizontal and vertical offsets specified in its parameters. The function does not draw,
2and your implementation may not use turtle at all. You must implement move by calling
Point’s move method. Test your code by running the function rectangle_move_test. If
you’ve implemented the methods correctly, you should get this output:
Problem 4
Complete the overlaps method of Rectangle, according to the specification given in the
code.
The overlaps method should return a bool indicating if a given Rectangle (identified
by the parameter other) overlaps (i.e. shares area) with the present rectangle (identified
by the parameter self). It should return a bool.
Hint: consider overlapping in the following manner.
If a rectangle is entirely to the left of another rectangle (i.e. its rightmost point is
to the left of the other’s leftmost point), then they don’t overlap.
If a rectangle is entirely to the right of another rectangle (i.e. its leftmost point is
to the right of the other’s rightmost point), then they don’t overlap. If a rectangle is entirely above another rectangle (i.e. its bottommost point is above
the other’s topmost point), then they don’t overlap.
If a rectangle is entirely below another rectangle (i.e. its topmost point is below the
other’s bottommost point), then they don’t overlap.
If none of the above conditions apply, then they overlap.
Test your code by running the function overlap_test. If you’ve implemented the methods
correctly, you should get this output:
>>> overlap_test()
r1 and r2 overlap? True
r3 and r4 overlap? False
Problem 5
Complete the intersection method of Rectangle, according to the specification given
in the code.
The intersection method should return a new Rectangle instance, identifying the area
that is shared between other and self. If they don’t overlap, then it should return an
“empty” Rectangle.
This function has already been partly implemented for you. Notice that it calls overlaps,
so make sure that you’ve correctly implemented that function first.
3Hint: you may want to use the min and max functions.
Test your code by running the function intersection_test. If you’ve implemented the
methods correctly, you should get this output:
Area of interesection: 600.0
Notice the small red rectangle formed by the intersection of the black rectangles.
Problem 6
You have been given an incomplete implementation of the Line class. Complete the Line
class according to the following specification.
Each instance of Line should identify a line on a two-dimensional plane. It must have
the following methods:
The constructor (def __init__(self, first, second)) must take self as well
as two additional parameters, both of type Point.
The method draw (def draw(self)) takes no parameters except self and returns
None. It should draw the line on the turtle canvas, using only the following functions:
turtle.penup, turtle.pendown, and turtle.goto.
The method slope (def slope(self)) takes no parameters except self and returns
a float identifying the slope of the current line. If the line has no slope, raise
a ValueError with an appropriate message.
Test your code by running the function line_slope_test. If you’ve implemented the
methods correctly, you should get
this output:
>>> line_slope_test()
l1 has slope 1.0
l2 has slope -0.5

联系我们
  • QQ:99515681
  • 邮箱:99515681@qq.com
  • 工作时间:8:00-21:00
  • 微信:codinghelp
热点标签

联系我们 - QQ: 99515681 微信:codinghelp
程序辅导网!