首页 > > 详细

CS5012讲解 、辅导 Python设计程序

CS5012 Mark-Jan Nederhof Practical 1
Practical 1: Part of speech tagging:
three algorithms
This practical is worth 50% of the coursework component of this module. Its due
date is Wednesday 6th of March 2024, at 21:00. Note that MMS is the definitive source
for deadlines and weights.
The purpose of this assignment is to gain understanding of the Viterbi algorithm,
and its application to part-of-speech (POS) tagging. The Viterbi algorithm will be
related to two other algorithms.
You will also get to see the Universal Dependencies treebanks. The main purpose
of these treebanks is dependency parsing (to be discussed later in the module), but
here we only use their part-of-speech tags.
Getting started
We will be using Python3. On the lab (Linux) machines, you need the full path
/usr/local/python/bin/python3, which is set up to work with NLTK. (Plain
python3 won’t be able to find NLTK.)
If you run Python on your personal laptop, then next to NLTK (https://www.
nltk.org/), you will also need to install the conllu package (https://pypi.org/
project/conllu/).
To help you get started, download gettingstarted.py and the other Python
files, and the zip file with treebanks from this directory. After unzipping, run
/usr/local/python/bin/python3 gettingstarted.py. You may, but need not, use
parts of the provided code in your submission.
The three treebanks come from Universal Dependencies. If you are interested,
you can download the entire set of treebanks from https://universaldependencies.
org/.
1
Parameter estimation
First, we write code to estimate the transition probabilities and the emission probabilities of an HMM (Hidden Markov Model), on the basis of (tagged) sentences from
a training corpus from Universal Dependencies. Do not forget to involve the start-ofsentence marker ⟨s⟩ and the end-of-sentence marker ⟨/s⟩ in the estimation.
The code in this part is concerned with:
• counting occurrences of one part of speech following another in a training corpus,
• counting occurrences of words together with parts of speech in a training corpus,
• relative frequency estimation with smoothing.
As discussed in the lectures, smoothing is necessary to avoid zero probabilities for
events that were not witnessed in the training corpus. Rather than implementing a
form of smoothing yourself, you can for this assignment take the implementation of
Witten-Bell smoothing in NLTK (among the implementations of smoothing in NLTK,
this seems to be the most robust one). An example of use for emission probabilities is
in file smoothing.py; one can similarly apply smoothing to transition probabilities.
Three algorithms for POS tagging
Algorithm 1: eager algorithm
First, we implement a naive algorithm that chooses the POS tag for the i-th token
on the basis of the chosen (i − 1)-th tag and the i-th token. To be more precise, we
determine for each i = 1, . . . , n, in this order:
tˆi = argmax
ti
P(ti
| tˆi−1) · P(wi
| ti)
assuming tˆ0 is the start-of-sentence marker ⟨s⟩. Note that the end-of-sentence marker
⟨/s⟩ is not even used here.
Algorithm 2: Viterbi algorithm
Now we implement the Viterbi algorithm, which determines the sequence of tags for a
given sentence that has the highest probability. As discussed in the lectures, this is:
tˆ1 · · ·tˆn = argmax
t1···tn
Yn
i=1
P(ti
| ti−1) · P(wi
| ti)
!
· P(tn+1 | tn)
2
where the tokens of the input sentence are w1 · · ·wn, and t0 = ⟨s⟩ and tn+1 = ⟨/s⟩ are
the start-of-sentence and end-of-sentence markers, respectively.
To avoid underflow for long sentences, we need to use log probabilities.
Algorithm 3: individually most probable tags
We now write code that determines the most probable part of speech for each token
individually. That is, for each i, computed is:
tˆi = argmax
ti
X
t1···ti−1ti+1···tn
Yn
i=1
P(ti
| ti−1) · P(wi
| ti)
!
· P(tn+1 | tn)
To compute this effectively, we need to use forward and backward values, as discussed
in the lectures on the Baum-Welch algorithm, making use of the fact that the above is
equivalent to:
tˆi = argmax
ti
P
t1···ti−1
Qi
k=1 P(tk | tk−1) · P(wk | tk)

·
P
ti+1···tn
Qn
k=i+1 P(tk | tk−1) · P(wk | tk)

· P(tn+1 | tn)
The computation of forward values is very similar to the Viterbi algorithm, so you
may want to copy and change the code you already had, replacing statements that
maximise by corresponding statements that sum values together. Computation of
backward values is similar to computation of forward values.
See logsumexptrick.py for a demonstration of the use of log probabilities when
probabilities are summed, without getting underflow in the conversion from log probabilities to probabilities and back.
Evaluation
Next, we write code to determine the percentages of tags in a test corpus that are
guessed correctly by the above three algorithms. Run experiments for the training
and test corpora of the three included treebanks, and possibly for treebanks of more
languages (but not for more than 5; aim for quality rather than quantity). Compare
the performance of the three algorithms.
You get the best experience out of this practical if you also consider the languages of
the treebanks. What do you know (or what can you find out) about the morphological
and syntactic properties of these languages? Can you explain why POS tagging is more
difficult for some languages than for others?
3
Requirements
Submit your Python code and the report.
It should be possible to run your implementation of the three algorithms on the
three corpora simply by calling from the command line:
python3 p1.py
You may add further functionality, but then add a README file to explain how to run
that functionality. You should include the three treebanks needed to run the code, but
please do not include the entire set of hundreds of treebanks from Universal
Dependencies, because this would be a huge waste of disk space and band
width for the marker.
Marking is in line with the General Mark Descriptors (see pointers below). Evidence of an acceptable attempt (up to 7 marks) could be code that is not functional but
nonetheless demonstrates some understanding of POS tagging. Evidence of a reasonable attempt (up to 10 marks) could be code that implements Algorithm 1. Evidence
of a competent attempt addressing most requirements (up to 13 marks) could be fully
correct code in good style, implementing Algorithms 1 and 2 and a brief report. Evidence of a good attempt meeting nearly all requirements (up to 16 marks) could be
a good implementation of Algorithms 1 and 2, plus an informative report discussing
meaningful experiments. Evidence of an excellent attempt with no significant defects
(up to 18 marks) requires an excellent implementation of all three algorithms, and a
report that discusses thorough experiments and analysis of inherent properties of the
algorithms, as well as awareness of linguistic background discussed in the lectures. An
exceptional achievement (up to 20 marks) in addition requires exceptional understanding of the subject matter, evidenced by experiments, their analysis and reflection in
the report.
Hints
Even though this module is not about programming per se, a good programming style
is expected. Choose meaningful variable and function names. Break up your code into
small functions. Avoid cryptic code, and add code commenting where it is necessary for
the reader to understand what is going on. Do not overengineer your code; a relatively
simple task deserves a relatively simple implementation.
You cannot use any of the POS taggers already implemented in NLTK. However,
you may use general utility functions in NLTK such as ngrams from nltk.util, and
FreqDist and WittenBellProbDist from nltk.
4
When you are reporting the outcome of experiments, the foremost requirement is
reproducibility. So if you give figures or graphs in your report, explain precisely what
you did, and how, to obtain those results.
Considering current class sizes, please be kind to your marker, by making their task
as smooth as possible:
• Go for quality rather than quantity. We are looking for evidence of understanding
rather than for lots of busywork. Especially understanding of language and how
language works from the perpective of the HMM model is what this practical
should be about.
• Avoid Python virtual environments. These blow up the size of the files that
markers need to download. If you feel the need for Python virtual environments,
then you are probably overdoing it, and mistake this practical for a software
engineering project, which it most definitely is not. The code that you upload
would typically consist of three or four .py files.
• You could use standard packages such as numpy or pandas, which the marker will
likely have installed already, but avoid anything more exotic. Assume a version
of Python3 that is the one on the lab machines or older; the marker may not
have installed the latest bleeding-edge version yet.
• We strongly advise against letting the report exceed 10 pages. We do not expect
an essay on NLP or the history of the Viterbi algorithm, or anything of the sort.
• It is fine to include a couple of graphs and tables in the report, but don’t overdo
it. Plotting accuracy against any conceivable hyperparameter, just for the sake
of producing lots of pretty pictures, is not what we are after.
Pointers
• Marking
http://info.cs.st-andrews.ac.uk/student-handbook/
learning-teaching/feedback.html#Mark_Descriptors
• Lateness
http://info.cs.st-andrews.ac.uk/student-handbook/
learning-teaching/assessment.html#lateness-penalties
• Good Academic Practice
https://www.st-andrews.ac.uk/students/rules/academicpractice/
5

联系我们
  • QQ:99515681
  • 邮箱:99515681@qq.com
  • 工作时间:8:00-21:00
  • 微信:codinghelp
热点标签

联系我们 - QQ: 99515681 微信:codinghelp
程序辅导网!